R2D2

US from clinical Records 2 Diagnostic Decisions
Underway
01/12/2021

-

30/12/2021

Main objectives

The R2D2 project proposes to study how formal or semi-formal representations of clinical protocols for diagnosis can be automatically learned from patient data. To this end, we (1) study two families of methods to infer such decision processes from clinical data warehouses, and (2) will define a framework for evaluating and comparing learned and pre-existing protocols.

Contacts:
Antoine Neuraz, rf.ph1735832238pa@za1735832238ruen.1735832238eniot1735832238na1735832238, HeKA team and Necker Hospital, AP-HP
Adrien Coulet, rf.ai1735832238rni@t1735832238eluoc1735832238.neir1735832238da1735832238, HeKA team
© Inria / Photo H. Raguet

Publications

Members

AP-HP, Inria, Inserm, Université de Paris

Other projects

COVIPREDS

Description

US Caractérisation et prédiction de la survenue de formes graves ou létales du COVID-19 à partir des données issues de l’EDS de l’AP-HP

Names of partners involved
AP-HP, Inria & Centrale Supélec

read more